E-TAC (GB Series)
Packaged Terminal Air Conditioner / Heat Pump
7,000 – 15,000 Btuh

Performance and Specifications

Engineered Terminal Air Conditioner
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4</td>
<td>APPLICATIONS</td>
</tr>
<tr>
<td>4</td>
<td>PRODUCT NOMENCLATURE</td>
</tr>
<tr>
<td>5</td>
<td>PRODUCT OVERVIEW</td>
</tr>
<tr>
<td>6-9</td>
<td>PRODUCT FEATURES & BENEFITS</td>
</tr>
<tr>
<td>10</td>
<td>COASTAL PROTECTION</td>
</tr>
<tr>
<td>11</td>
<td>HEAT PUMP OPERATION</td>
</tr>
<tr>
<td>12-20</td>
<td>FIELD INSTALLED ACCESSORIES</td>
</tr>
<tr>
<td>21-25</td>
<td>DIMENSIONAL DRAWINGS & INSTALLATION DATA - NEW CONSTRUCTION</td>
</tr>
<tr>
<td>26</td>
<td>WALL THERMOSTAT CONNECTIONS</td>
</tr>
<tr>
<td>27-30</td>
<td>PERFORMANCE AND ELECTRICAL DATA</td>
</tr>
<tr>
<td>31-33</td>
<td>EXPANDED OPERATING RATING</td>
</tr>
<tr>
<td>33</td>
<td>INDOOR FAN PERFORMANCE DATA</td>
</tr>
<tr>
<td>34-35</td>
<td>SOUND DATA</td>
</tr>
<tr>
<td>35</td>
<td>SOUND TRANSMISSION COEFFICIENT</td>
</tr>
<tr>
<td>36</td>
<td>OUTDOOR GRILLE SIZING</td>
</tr>
<tr>
<td>37-38</td>
<td>TYPICAL WIRING SCHEMATICS</td>
</tr>
<tr>
<td>39</td>
<td>ENERGY MANAGEMENT WIRING</td>
</tr>
<tr>
<td>40</td>
<td>MULTIPLE WALL THERMOSTAT WIRING</td>
</tr>
<tr>
<td>41-44</td>
<td>GUIDE SPECIFICATION</td>
</tr>
</tbody>
</table>
APPLICATIONS
Whether you are designing a new structure or replacing packaged terminal air conditioning units in an existing building, Gree E-TAC will meet your needs.

- Hotels and motels
- Nursing homes and assisted living care centers
- Offices
- Apartments
- Single-family dwellings
- Home conversions and residential add-ons

NEW CONSTRUCTION
The Gree E-TAC Packaged Terminal Air Conditioning (E-TAC) unit is designed to meet the needs of the architect, engineer, and contractor. For unit installation, Gree’s expert support network will assist in all applicable aspects of the construction project, from preparing a budget to start-up.

ADVANTAGES FOR NEW CONSTRUCTION
Design Flexibility for the Architect/Engineer
- Whisper-quiet performance, indoors and out
- No bulky duct system
- No separate equipment room
- No water towers or additional cooling equipment
- No complex match-up of different HVAC components
- Less sensitivity to building orientation (sun, wind, shade)
- Optional architectural grille to permit custom exterior appearance

Initial Cost Savings for the Building Owner
- No expensive component HVAC system purchase
- No equipment room or maintenance engineering staff
- Two-part delivery to minimize on-site damage
- Weather-protected wall sleeve that goes in place during construction; chassis that slides in place after construction
- No seasonal changeover required for cooling or heating - units are self-contained comfort systems

Lower Operating Costs and Reliable Comfort for The Occupant
- Heat pump models offer substantial savings over models with conventional electric resistance heaters
- Individual units allow tenants to choose the degree of comfort and operating economy.
- Rapid servicing reduces downtime: complete chassis can be replaced in minutes without disrupting other occupants.
- Each unit operates independently of other units in the building. No dependency by building on central HVAC system.

RETROFIT/REPLACEMENT
If you are replacing a unit in an existing wall sleeve, your options include:
- Replace the existing wall sleeve with the polymer wall sleeve. See accessory sleeve section for selecting the correct sleeve for your application.
 NOTE: in most cases, when replacing the wall sleeve, the exterior grille must also be replaced.
- Use an existing sleeve and exterior grille. The Gree E-TAC will fit into:
 — The following major competitors’ wall sleeves/grilles: Carrier, GE, Amana, Trane, Friedrich and Bryant, and NO accessory retrofit kit is required.
 — Friedrich T series and ZoneAire wall sleeves, with a required wall sleeve extension (see accessory Friedrich Retrofit Wall Sleeve Adapter).
APPLICATION CONSIDERATIONS

Installation instructions are shipped with all E-TAC units. It is important that air conditioning systems be properly sized and installed for each application in order to achieve the desired temperature and humidity levels within the space to be conditioned. It is strongly recommended that a professional engineer match the E-TAC units with the building structure and climate.

The following application considerations are all important in choosing the proper E-TAC for the building structure.

Undersizing

If an E-TAC unit is undersized (cooling capacity is less than required load for an application), the unit will not be able to cool the space down to the desired temperature during very hot days. The result could be warm and humid or warm and dry conditioned space.

Oversizing

If an E-TAC unit is oversized (cooling capacity is greater than required load for the specific application), the unit will cool the space down to the desired temperature too quickly.

The unit will cycle on and off, however, dehumidification only takes place when the unit is operating. The result of this type of application in a hot and/or humid climate would be a cool, yet excessively humid, space.

Air Infiltration

Excessive air infiltration can intensify problems associated with undersizing or oversizing a E-TAC unit. This can be the cause of insufficient cooling, dehumidification, or heating. Sources of air infiltration include vents, gaps around windows and doors, and improperly sealed floors, ceilings or wall joints.

Condensate Removal

Gree’s E-TAC has a new condensate (water) disposal system. The outdoor fan prop has a built in slinger ring which draws condensate and sprays it on the warm outdoor coil for evaporation. Thus providing better disposal of excess condensate and improving unit operating efficiency.

It is normal and desirable to have some condensate water in the base pan to boost operating efficiency.

NOTE: This unit will not always evaporate 100% of the unit generated condensate and blown in rain water. If it is necessary to control 100% of the condensate, the Drain Kit (Part No.: DRAIN-KIT-1PK) and a building condensate drain system is recommended.
PRODUCT OVERVIEW (E-TAC)

This section summarizes product features covered in detail in later sections of this manual.

Comfortouch Digital Control

• Temperature Display and Touch Pad on Unit
 Precise and easy-to-use

• Continuous Temperature Sensing
 Ideal comfort for your guests

• Cooling, Heating and Fan Modes
 One unit for all seasons

• Setpoint Stoppers
 Electronic temperature limiting reduces operating costs

• Auto Restart and Random Restart Delay
 Automatically restarts after a power failure

• Freeze Protection
 Protects unoccupied rooms from freezing temperatures

• Emergency Heat (Heat Pump Models)
 Bypasses compressor operation and activates electric heater for guest comfort

• Remote Control Options
 The ultimate in installation flexibility; Wired, Wireless or Energy Management

Silencer System

• Three-Speed Indoor Fan
 More comfort options for guests to choose from

• Dual Motor Technology
 Separate indoor and outdoor motors allows one of the quietest and most efficient units in the industry

• AeroQuiet Indoor Blower Wheel
 Provides quiet and consistent airflow for maximum guest comfort

• Rotary Compressor Technology
 Quiet operation and low sound transmission indoors

• Insulated Bulkhead Between Indoors and Outdoors
 Quiet operation and low sound transmission indoors

Smartfan Comfort Control

• Programmable Constant Fan Operation
 Gree Customized Comfort in heating or cooling modes

• Quiet Fan Start-Up and Stops
 Smooth ramp-up and ramp-down of fan speed for quiet comfort
E-TAC PRODUCT FEATURES AND BENEFITS

E-TAC 5-YEAR WARRANTY
All E-TACs are protected by a five-year limited warranty.
• Two-year parts and labor limited warranty
• Three years additional parts and labor coverage on the sealed refrigeration system
• Limited three years (years 3-5) parts-only coverage

TWO-PIECE LIFETIME INDOOR FILTER
Two-piece removable filters easily slide in and out from the front of the E-TAC unit and are interchangeable. The front panel does not need to be removed to access or change the filters. The filters are washable and permanent.

EASY ACCESS TO CHASSIS
Access to the chassis simply requires removing front panel, then four easy-to-access screws and then sliding the chassis out of the sleeve for service or maintenance.

OUTDOOR AIR VENTILATION
The unique vent system is activated by a two-position control. Fresh outside air is redirected by the vent door to the indoor room. A molded plastic filter prevents dirt and debris from entering the room side of the unit. The vent mechanism is made from non-corrosive material ensuring reliable operation. A magnet on the door and high-pressure airflow create a tight, draft-free seal when the vent door is closed.

The vent will provide up to 65 cfm of fresh air.
BI-DIRECTIONAL DISCHARGE GRILLE
The discharge grille is constructed of durable polycarbonate and is reversible. Air flows upward at a 40 degree angle to the floor but can easily be adjusted to an 80 degree angle to the floor.

SYSTEM CONFIGURATION
There are many different configuration possibilities, through both dip switches and the digital keypad, that allow you to configure the E-TAC for your exact application. See Owner’s Manual for more detailed information.

COMFORTOUCH DIGITAL CONTROL
The digital keypad provides a simple to operate control. The large, easy to press, “On/Off”, “Fan Speed”, “Mode”, “Setpoint Up” and “Setpoint Down” buttons make the control easy to operate. LEDs are used to show the operating conditions selected. Large numbers are used to display the Setpoint, and if configured, room air temperature.

STAY DRY DEHUMIDIFICATION
The E-TAC provide users with Stay Dry mode to reduce the humidity in the room, making it more comfortable.

The Stay Dry mode is designed to assist removing extra moisture from the air, not dry it out completely. This is not intended to replace a dehumidifier or act as a dehumidifier.

SLEEP MODE
The E-TAC sleep mode function is geared toward making sleeping conditions more pleasant without your having to get up and adjust the unit while in bed. The sleep mode feature allows a time period between 0.5 to 24 hours for the E-TAC to automatically turn off for a pleasant sleeping experience.
SETPOINT STOPPER
The E-TAC allows building owners and operators to set an allowable setpoint range for heating and cooling, operative to maintain room temperature to a limited setpoint range and save energy. The E-TAC comes from factory with economical settings of 65-78°. The cooling and heating setpoint limits may be adjusted independently and the range may be expanded or reduced to satisfy your needs and application.

WALL THERMOSTAT INTERFACE
E-TAC provides a standard wired wall thermostat interface connecting block for quick easy installation. The unit has a removable terminal connector to make field wiring easy. See more info on wall thermostat connections in the Dimensional Drawings and Installation Data Section.

ENERGY MANAGEMENT INTERFACE
The Energy Management interface is standard and provides a simple to install Energy Management connection. The unit has a removable terminal connector to make field wiring easy. When 24VAC is supplied to the input the unit will turn off. Once the 24VAC is removed (becomes 0 volts), the unit will turn back on.

Note: For more info, see the section in the back, Typical Wiring Schematic For Energy Management Interface.
SEAMLESS BASEPAN
Seamless drawn basepan add protection against water accumulation resulting from storm-driven rain with heavy wind. Gree’s deep basepan hold up to 1-3/4 gallons (6.6 liters) of water without spilling.

CONDENSATE DRAIN VALVE
The temperature-activated drain valve opens when the outdoor temperature drops below 55°F (12.8°C) to prevent water from freezing in the basepan.

CONDENSATE REMOVAL
Gree’s E-TAC has a new condensate (water) disposal system. The suction pull, along with the slinger ring, draws in water which is sprayed up onto the outdoor coil. The water then evaporates, thus providing better disposal of excess condensate and improving unit efficiency.

NOTE: If it is necessary to control 100% of the condensate, the Drain Kit (Part No.: DRAIN-KIT-1PK) is recommended.
COASTAL PROTECTION

The Gree Coastal E-TAC features a corrosion-resistant coating that exceeds the performance and protection of other products of this kind on the market. The coating provides the salt air corrosion protection giving you the added reliability in your business.

Install the best in corrosion protection for your property, without the worry of performance degradation, coating breakdown or shortened life.

Gree’s Coastal Units are made with a blue-colored anti-corrosion epoxy treated to resist corrosion. This technology maintains excellent heat transfer properties while extending the coil life against damage from salt air and salt water in seacoast installations. This is a tough epoxy coating that uniformly covers the outside coil surface with a thick .5 to 1.0 mil layer of protection. This advanced material is highly flexible, eliminating cracking problems with traditional coatings and dipped coils.

COASTAL PREMIUM PROTECTION

• Condenser Coils are coated with a corrosion resistant epoxy resin providing enhanced resistance to acidic and salt air conditions.
• 1500 hr salt spray tested.
• Durable non-corrosive fan wheel and shroud.
• Added protection with durable powder coated paint.
• All exposed fasteners manufactured of high quality stainless steel.

NOTE: Refer to the product warranty for reduced warranty coverage on standard non-corrosion protected units installed within one mile of the of the sea coast or within a corrosive environment.
HEAT PUMPS PAY THEIR OWN WAY

Heat pump models are available at a nominal additional cost. In many locales, the payback is realized in just a few months.

SPECIAL FEATURES

Two-Stage Thermostat:
The indoor thermostat senses the indoor temperature and automatically turns on the electric heat to warm the room quickly. After the desired temperature conditions have been satisfied, the thermostat automatically switches to heat pump mode. If compressor failure occurs, the thermostat will provide backup electric heat automatically.

Outdoor Thermostat:
During the heating cycle, the outdoor thermostat senses outdoor coil temperature. It switches the unit to electric heat mode when the outdoor coil temperature is 28°F (−2.2°C) or below for one minute. The thermostat switches the unit back to heat pump mode when the outdoor coil temperature rises above 40°F (4.4°C) for ten minutes, which is enough to provide heat to meet demand. The entire operation is completely automatic.

Reversing Valve:
The reversing valve provides quiet refrigerant flow when energized in heating mode. The valve controls the direction of refrigerant flow for both heating and cooling functions and remains energized as long as the controls are in the heat position. When the cooling controls are activated, the valve automatically reverses to the cooling position.

Manual Compressor Override Configuration:
This configuration dip switch completely locks out the compressor. See Owners Manual for more details. Note that the compressor and heater do not operate at the same time, thus conserving energy.

HOW THE HEAT PUMP WORKS

In Hot Weather:
Gree’s E-TAC units provide indoor comfort in the same manner as conventional air conditioners, removing heat and humidity from indoor air. The heat and humidity is released to the outdoors. Gree’s high efficiency design saves energy and reduces cooling costs.

In Cool Weather:
When the outdoor coil temperature is above 28°F (−2.2°C), the heat pump draws heat from outdoor air and uses it to heat indoor air. Since heat is transferred and not produced, Gree’s heat pump uses less electricity and reduces energy costs significantly.

In Sub-Freezing Weather:
When the outdoor coil temperature falls below 28°F (−2.2°C) for one minute, the unit automatically switches on a built-in electric heater. The compressor stops and the indoor fan circulates warm air produced by the heater. When the outdoor coil temperature rises above 40°F (4.4°C) for ten minutes, heat pump operation resumes automatically.
FIELD-INSTALLED ACCESSORIES

POLYMER WALL SLEEVES

For the best performance and longest life, Gree recommends genuine polymer wall sleeves for all installations.

All polymer wall sleeves are made from a molded polymer that is designed for strength and durability. This material has excellent corrosion resistance and a flammability rating of UL94-5V.

The sleeve surface is textured to prevent shine and hide scratches. The rib configuration on the sleeve bottom allows easy chassis removal and aids in drainage.

The locating holes in the side and top panels allow for easy fastening of the sleeve to wall openings. Refer to dimension drawings in Typical Wall Installation and Dimension section.

The sleeve’s alpine mist color (a shade of beige) closely matches the front panel and blends in well with any inside or outside decor. The polymer wall sleeve comes in both insulated (factory installed) or non-insulated, to meet the requirements of every application.

IMPORTANT For applications where weather conditions could influence sleeve sweating, a condition that can occur when the outside temperature is cold and the indoor conditions are warm and humid, the Insulated Polymer Wall Sleeve should be considered.

Insulated Polymer Wall Sleeve
Part No.: SLEEVE-INSUL-1PK
Gree’s accessory insulated polymer wall sleeve, with factory-installed insulation, provides superior sound absorption, reduces heat loss and prevents sleeve sweating, a condition that can occur when the outside temperature is cold and the indoor conditions are warm and humid.

Non-Insulated Polymer Wall Sleeve
Part No.: WALL-SLEEVE-1PK
Gree’s accessory non-insulated polymer wall sleeve provides a superior appearance and protection for many applications.

Certified Seacoast Protection
FIELD-INSTALLED ACCESSORIES (CONT.)

Metal Insulated Wall Sleeves
Part No.: SLEEVE-STEEL-1PK
SLEEVE-EXT18-1PK
SLEEVE-EXT24-1PK
SLEEVE-EXT26-1PK
SLEEVE-EXT28-1PK

Gree’s metal wall sleeves are available in a variety of sizes for most applications and difficult installations. Choose from 14-3/4 in., 18 in., 24 in., 26 in., or 28 in. (375 mm, 457 mm, 610 mm, 660 mm, and 711 mm) standard depth sizes. All metal wall sleeves come with factory-installed insulation, designed to minimize heat loss, reduce outdoor noise transmissions into the room and prevent sleeve sweating. In addition, the metal wall sleeve provides a flammability rating higher than UL94-5V.

Wall Sleeve Molding Kit
Part No.: SLEEVE-MOLDING

For a superior look and to hide any construction imperfections, use Gree’s wall sleeve molding kit to trim the wall sleeve to the wall. The molding kit is a perfect solution and can be used with any Gree wall sleeve (matches wall sleeve color).

Friedrich (and ZoneAire) Retrofit Wall Sleeve Adapter
Part No.: FR-SLEEVE-EXT

The Friedrich (and ZoneAire) wall sleeve adapter is constructed of metal and is designed to increase the depth of an existing Friedrich T-series or ZoneAire wall sleeve to accommodate all industry standard PTAC units.
FIELD-INSTALLED ACCESSORIES (CONT.)

OUTDOOR GRILLES

Polymeric Architectural Outdoor Grilles
(Louvered)
Part No.: GRILLE-PLA-BEIGE
 GRILLE-PLA-ALPIN
 (color matches Gree’s polymer wall sleeve)
 GRILLE-PLA-BROWN
 GRILLE-PLA-WHITE
This value line of polymeric architectural outdoor grilles will blend attractively with most building exteriors. Mounted easily from inside the room, the one-piece, molded grille is designed for protection, enhanced appearance, and superior weather-resistance. The grille is made of durable polymer and has a colorfast, lightly textured finish that blends well with most exterior finishes.

Aluminum Architectural Outdoor Grilles (Louvered)
Part No.: GRILLE-ALU-CLEAR (anodized aluminum)
 GRILLE-ALU-WHITE
 GRILLE-ALU-BEIGE
 GRILLE-ALU-ALPIN
 (color matches Gree’s polymer wall sleeve)
 (additional colors available)
This premium line of decorative outdoor grilles will enhance the appearance of any building. The grilles are made of strong, durable, extruded, anodized aluminum and are designed to be mounted easily from inside the room. These elegant grilles, available in many standard colors, have baked enamel finishes containing 50% Kynar® resin, for a superior finish that will withstand the most extreme conditions.

Standard Outdoor Aluminum Grille
Part No.: GRILLE-ALU-STAMP
This cost-effective, one-piece standard grille is made from durable anodized aluminum. The grille is lightweight, has a clear finish, and is easy to install from inside the room.

IMPORTANT: Gree recommends only the use of Gree-supplied grilles for use with the E-TAC units. However, the architectural designs of a building may dictate the use of special or oversized grilles and/or louvers. Special louvers or any special architectural treatment of the building facade that may restrict free circulation of condenser airflow should be referred to Gree Corporation for evaluation and approval. See Sizing Outdoor Grille Selection.
FIELD-INSTALLED ACCESSORIES (CONT.)

SUBBASE
Part No.: PTACSUBBASE-A
The easy to install, non-electrical subbase provides mechanical support and requires no wiring.

All subbase models are pre-assembled, mount to the wall sleeve, and come with adjustable legs and side skirting to provide a finished appearance.

A subbase (or leveling legs) is required for installations where the wall sleeve extends 4 or more inches into the room or the wall is less than 2 in. (50.8 mm) thick. The minimum clearance between the bottom of the sleeve and the floor is 3-1/4 in. (82.6 mm), and the maximum clearance is 5-1/2 (139.7 mm) inches.

Electrical Subbase Modules
Upgrade non-electrical subbase to a fully electrical subbase by add a Electrical Subbase module.

The electrical subbase modules have an electrical junction box, receptacle outlet, and cover plate.

Part No: PTAC-REC-230V15-A
PTAC-REC-230V20-A
PTAC-REC-230V30-A
PTAC-REC-265V15-A
PTAC-REC-265V20-A
PTAC-REC-265V30-A
PTAC-REC-HW-A

Subbase Fuse Kit
Part No.: PTAC-FUSE-15-A
PTAC-FUSE-20-A
PTAC-FUSE-30-A

The fuse kit provides in-line over-current protection at the unit when required by NEC (National Electric Code) or local codes.

Subbase Power Disconnect Switch
Part No.: PTAC-SWITCH-A
The subbase power disconnect 2-pole switch provides a recessed power disconnect for the PTAC unit when required by NEC or local codes.

IMPORTANT: The fuse kits and disconnect switch accessories can only be used with Part No. PTAC-SUBBASE-A.
FIELD-INSTALLED ACCESSORIES (CONT.)

Leveling Legs
Part No.: LEVELING-LEGS
Leveling legs attach easily to the wall sleeve and offer accurate leveling and support for units without a subbase. Leveling legs are adjustable from 3-1/4 to 5-1/2 inches (82.6 to 139.7 mm).

Hardwire Kit
Part No.: HARDWIRE-KIT-1PK
This accessory hardwire kit provides a permanent connection to the unit. Electrical hard wiring is required when NEC (National Electrical Code) or local codes restrict the use of power cord and plug connections. The hardwire kit mounts on the front right side of the unit and comes with 36 inches of flexible steel conduit and a Molex connector for easy connect/disconnect.

Conduit Interface Kit
Part No.: CONDUIT-INTF-4PK
The conduit interface accessory kit provides the wire connection to the unit to interface to existing installed conduit.

Ancillary 265v Power Cord
Part No. PTAC-CORD-15A
PTAC-CORD-20A
PTAC CORD-30A
The Ancillary 265v power cord extends 58 inches from bottom of front panel to the plug head. Do not use where prohibited by codes or regulations.
FIELD-INSTALLED ACCESSORIES (CONT.)

THERMOSTATS

Gree’s full line of wall thermostats are designed to enhance every E-TAC application. The TopTech Comfort Series of thermostats consists of programmable and non-programmable air conditioner and heat pump controls. Wall thermostats are simple and easy to use. Wall thermostats provide better temperature and humidity control as they can be placed in an optimal position in the room.

For wiring multiple E-TAC units to one wall thermostat see the Multiple Wall Thermostat Wiring section.

Non-Programmable Thermostat

Part No.: TT-N-411 (Heat / Cool Models)
 TT-N-421 (Heat Pump Models)

This low-voltage, easy-to-use non-programmable thermostat provides maximum guest comfort.

- Dual Powered – Hardwired or Battery
- Large Display with Bright Blue Backlight
- Adjustable Temperature Set Point Limits
- Non-Volatile Memory Retains User Settings
- Separate Heating and Cooling Set Points
- Display Degree F or C Switch
- Mount to Horizontal Box
- Adjustable Temperature Differential

Digital Programmable Thermostat

Part No.: TT-P-411 (Heat / Cool Models)
 TT-P-421 (Heat Pump Models)

This micro computer controlled, 7-day programmable wall thermostat has enhanced features for both heat pumps and heating/cooling units.

The programmable model includes the non-programmable features plus the following:

- 5-2 Day Separate Programming
- Adaptive Recovery Mode (ARM™)
- Separate Set Point Program Times
- Temporary Program Override
- Programmable Extended Hold Mode
- Meets California Title 24 Guidelines

Wireless Non-Programmable Thermostat

Part No.: TT-N-631W (for Heat Pump & Heat /Cool Models)

This low voltage wireless wall thermostat provides easy installation and superior performance. Includes both wireless wall thermostat and receiver module and features:

- Two speed fan control (High and Low Speed)
- Universal 2H/1C Heat Pump or 1H/1C Conventional
- Power Loss Memory
- Heating and Cooling Set-point Limit
- Large Temperature and Set-point Display
- Large Blue Backlight Screen
FIELD-INSTALLED ACCESSORIES (CONT.)

Air Deflector
Part No.: PTAC-DEFLECTOR-A
The PTAC Air Deflector mounts easily to the units and directs air up and away from overhanging drapes. The Air Deflector saves energy by eliminating trapped air flow between the window and the curtain while increasing guest comfort levels and helping to manage mold and mildew in the window area.

Sound Muzzler
Part No.: PTAC-SOUND-A
Our Sound Muzzler is specifically designed and constructed with environmentally friendly materials that absorb mechanical sound energy and block offensive noise from the compressor. This acoustic wrap is weatherproof and easy to install.

Security Door
Part No.: PTAC-LOCK-A
This key-locking security door kit prevents unauthorized access to the unit’s heating and cooling controls and prevents tampering with units in public locations and institutions. This field-installed accessory includes a control door with lock assembly and two matching keys.

E-9000 REMOTE CONTROL
Part No. 30510092MX
The E-9000 remote control is versatile and allows users to change room temperature and modes from the palm of your hand. The large LCD display and buttons makes it easy-to-understand and easy-to-use.
FIELD-INSTALLED ACCESSORIES (CONT.)

Condensate Drain Kit
Part No.: DRAIN-KIT-1PK
This universal drain kit may be used internally or externally to route condensate to a drainage system. It can be field-installed on any Gree wall sleeve. Although Gree units are designed to dissipate all the condensate generated during normal cooling, there may be times when abnormal conditions cause more condensate than the unit can dissipate. If condensate that drips from the wall sleeve is objectionable, this internal/external drain kit should be installed. The drain kit may be attached to the exterior right or left side of the wall sleeve for external draining or mounted to the room side of the wall sleeve for internal draining. A 3 in. (152.4 mm) straight tube and 90° curved tube are supplied to simplify any application (1/2 in. / 12.7 mm OD copper).

Replacement Filters
Part No.: GA-FILTER-10PK
The Gree E-TAC model replacement air filters come in packages of 10. The filters save energy by preventing the evaporator coils from being plugged with dirt and lint. These economical and sturdy filters are interchangeable and may be washed, vacuumed, and reused.

Baffle Kit
Part No.: BAFFLE-KIT-1PK
The accessory baffle kit ensures a good seal between the unit and the exterior grille to prevent air recirculation, which can cause system failure. The accessory baffle kit is required for applications where a Gree wall sleeve is used without a Gree authorized exterior grille.

IMPORTANT: For internal drains installed in the plastic wall sleeve, the drain must be installed on the flat area of the sleeve. It cannot be installed in the wafer area.

Drain Kit

Replacement Filters

Baffle Kit
FIELD-INSTALLED ACCESSORIES (CONT.)

Air Knight
The Air Knight by TopTech is an air treatment system not a filter. It drastically reduce odors, smoke, mold, fungi, VOC’s (chemical odors) and bacteria found in many rooms. Airborne bacteria and mold reduction is normally in the 90+ percentile.

Air Knight Plug-In
Part No.: RGF-PIP-16-GA.
The Air Knight Plug-In, plugs directly into a wall outlet and can be used with or without its internal fan. Because it has its own outlets as part of the unit, you do not lose the wall outlet.

Air Knight PTAC
Part No: TT-AKPTAC
The Air Knight PTAC mounts inside the E-TAC air discharge steam. The indoor fan delivers air treatment quietly and affectively into the room. The PTAC Air Knight is never lost or misplaced since it stays attached to the unit.
DIMENSIONAL DRAWINGS AND INSTALLATION DATA - NEW CONSTRUCTION

Proper building practices must be used when constructing a wall opening to support a PTAC wall sleeve and chassis. If practices are unknown, consult your local architect or building contractor. Installed wall sleeve must be level from side to side and a quarter bubble to the outside.

DIMENSIONAL DRAWINGS AND INSTALLATION DATA

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>CURRENT</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>SUPPLIER 1</th>
<th>SUPPLIER 2</th>
<th>SUPPLIER 1</th>
<th>SUPPLIER 2</th>
<th>PLUG TYPE</th>
<th>NEMA PLUG</th>
<th>NEMA RECEPTACLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>208/230</td>
<td>15</td>
<td>58 (1473)</td>
<td>2.36 (60)</td>
<td>2.44 (62)</td>
<td>3.35 (85)</td>
<td>4 (101)</td>
<td>6-15P</td>
<td>6-15R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208/230</td>
<td>20</td>
<td>58 (1473)</td>
<td>2.36 (60)</td>
<td>2.44 (62)</td>
<td>3.35 (85)</td>
<td>4 (101)</td>
<td>6-20P</td>
<td>6-20R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208/230</td>
<td>30</td>
<td>58 (1473)</td>
<td>2.55 (65)</td>
<td>4 (101)</td>
<td>2.63 (67)</td>
<td>3.8 (96)</td>
<td>6-30P</td>
<td>6-30R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>15</td>
<td>15 (381)</td>
<td>1.5 (38.2)</td>
<td>1.46 (37.3)</td>
<td>7-15P</td>
<td>7-15R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>20</td>
<td>15 (381)</td>
<td>2 (50)</td>
<td>2.48 (63.2)</td>
<td>7-20P</td>
<td>7-20R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>30</td>
<td>15 (381)</td>
<td>2.41 (61.3)</td>
<td></td>
<td>7-30P</td>
<td>7-30R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPLICATIONS

• Hotels and motels
• Nursing homes and assisted living care centers
• Offices
• Apartments
• Single--family dwellings
• Home conversions and residential add--ons

NEW CONSTRUCTION

ADVANTAGES FOR NEW CONSTRUCTION

Design Flexibility for the Architect/Engineer

• Whisper-quiet performance, indoors and out
• No bulky duct system
• No separate equipment room
• No water towers or additional cooling equipment
• No complex match--up of different HVAC components
• Less sensitivity to building orientation (sun, wind, shade)
• Optional architectural grille to permit custom exterior appearance

Initial Cost Savings for the Building Owner

• No expensive component HVAC system purchase
• No equipment room or maintenance engineering staff
• Two--part delivery to minimize on--site damage
• Weather--protected wall sleeve that goes in place during construction; chassis that slides in place after construction
• No seasonal changeover required for cooling or heating -- units are self--contained comfort systems

Lower Operating Costs and Reliable Comfort for The Occupant

• Heat pump models offer substantial savings over models with conventional electric resistance heaters
• Individual units allow tenants to choose the degree of comfort and operating economy.
• Rapid servicing reduces downtime: complete chassis can be replaced in minutes without disrupting other occupants.
• Each unit operates independently of other units in the building. No dependency by building on central HVAC system

RETROFIT/REPLACEMENT

If you are replacing a unit in an existing wall sleeve, your options include:

• Replace the existing wall sleeve with the polymer wall sleeve. See accessory sleeve section for selecting the correct sleeve for your application.
• Use an existing sleeve and exterior grille. The Gree E-TAC will fit into:
 — Friedrich T series and ZoneAire wall sleeves, with a required wall sleeve extension (see accessory Friedrich Retrofit Wall Sleeve Adapter).

Whether you are designing a new structure or replacing packaged terminal air conditioning units in an existing building, Gree E-TAC will meet your needs.

The Gree E-TAC Packaged Terminal Air Conditioning (E-TAC) unit is designed to meet the needs of the architect, engineer, and contractor. For unit installation, Gree's expert support network will assist in all applicable aspects of the construction project, from preparing a budget to start-up.

The following major competitors' wall sleeves/grilles: Carrier, GE, Amana, Trane, Friedrich and Bryant, and NO accessory retrofit kit is required.
WALL SLEEVE MOUNTING DIMENSIONS FOR STANDARD AND ACCESSORY GRILLES

Standard Polymer Non-Insulated Wall Sleeve

Standard Polymer Insulated Wall Sleeve

Framing and Minimum Wall Sleeve Opening

Wall Sleeve Mounting (All Models)

NOTE: Dimensions in [] are in millimeters
TYPICAL WALL INSTALLATION

Important Sleeve Installation Considerations:
- All Gree sleeves are self-pitching and must be mounted level in all directions.
- The sleeve should be caulked on all sides, including both inside and outside the building.
- If more than 4 in. (101.6 mm) of wall sleeve projects into the room, an accessory subbase must be used for support.
- For all applications with an accessory subbase, wall sleeve must extend 3-1/4 in. (82.6 mm) minimum into room and must be 3-1/4 in. (82.6 mm) minimum to 5-1/2 in. (139.7 mm) maximum above floor (including carpeting) to allow for proper fit of subbase.
- For applications where the wall sleeve is mounted flush to the exterior of the building (or recessed in), Gree recommends a field-supplied drip edge be installed to prevent water infiltration into the building.
- Insulated wall sleeves should be considered for superior sound absorption, to reduce heat loss and to prevent sleeve sweating, a condition that can occur when the outside temperature is cold and the indoor conditions are warm and humid.

NOTES:
1. Sleeve may be flush mounted to floor, but front panel may have to be notched to accommodate service cord.
2. If more than 4 in. (101.6 mm) of sleeve projects into room, an accessory subbase must be used for support.
3. For walls 2 in. (50.8 mm) thick or less, an accessory subbase must be used for support.
4. Caulk around sleeve on both indoor and outdoor sides.
MINIMUM CLEARANCE FOR INDOOR AND OUTDOOR DISCHARGE AIR

CAUTION

EQUIPMENT OPERATION HAZARD

Failure to follow this caution may result in equipment damage or improper operation. Blocking indoor or outdoor discharge air could cause premature failure of unit.

Indoor and Outdoor Discharge Air Circulation

Back of Polymer Wall Sleeve

NOTE

For your application, see section for selecting the correct sleeve for the polymer wall sleeve. See accessory sleeve sections for replacing the existing wall sleeve with the polymer wall sleeve. See accessory Friedrich Retrofit Wall Sleeve Adapter.

NOTE

Each unit operates independently of other units in the building. No dependency by building on central HVAC system.

Individual units allow tenants to choose the degree of comfort and operating economy.

Replace the existing wall sleeve with the chassis can be replaced in minutes without disrupting other occupants.

Use an existing sleeve and exterior grille. The access to polymer is required.

Trane, Friedrich, and Bryant, and NO sleeves, with a required wall sleeve extension (see accessory Friedrich Retrofit Wall Sleeve Adapter).
NOTES:

1. Accessory subbase is required for applications where:
 - Wall sleeve extends 4 inches (101.6 mm) or more into the room.
 - Wall thickness is less than 2 inches (50.8 mm).
 - All 265-v cord-connected applications.

2. For all applications with an accessory subbase:
 - Wall sleeve must extend 4 in. (101.6 mm) into the room and 3-1/4 in. (82.6 mm) minimum above the floor.
 - Subbase height is adjustable from 3-1/4 in. (82.6 mm) to 5-1/2 in. (139.7 mm) maximum above floor (including carpeting).
 - Refer to wall sleeve installation instructions.
WALL THERMOSTAT CONNECTIONS

Control Box Wire Terminal for Wall Thermostat Models

NOTES:
1. Use terminal "O" for heat pump connection only.
2. Terminal "C" (common) is typically only required for digital thermostats.

Terminal Connector Removal and Replacement

Terminal Connections

NOTE: Thermostat wire is field supplied. Recommended wire gage is 18 to 20 gage solid thermostat wire. Thermostat wire should always be routed around or under, NEVER through, the wall sleeve. The wire should then be routed behind the front panel to the easily accessible terminal connector.

Terminal Wire Routing

THERMOSTAT WIRE ROUTING
(UNDER SLEEVE, BEHIND FRONT PANEL)
PERFORMANCE AND ELECTRICAL DATA

208/230V HEAT/COOL MODEL

<table>
<thead>
<tr>
<th>MODEL NUMBER E-TAC</th>
<th>CAPACITY* [Btu/h]</th>
<th>AMPS</th>
<th>WATTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL NUMBER E-TAC</td>
<td>6-15R</td>
<td>7-15R</td>
<td>7-20R</td>
</tr>
<tr>
<td>Cooling</td>
<td>Heating</td>
<td>Cooling</td>
<td>Heating</td>
</tr>
<tr>
<td>07H020V20A-A</td>
<td>8,800/9,000</td>
<td>3.9/3.7</td>
<td>99%</td>
</tr>
<tr>
<td>09H020V20A-A</td>
<td>11,800/12,000</td>
<td>5.35/5.1</td>
<td>99%</td>
</tr>
<tr>
<td>12H020V20A-A</td>
<td>14,600/15,000</td>
<td>7.5/7.0</td>
<td>99%</td>
</tr>
<tr>
<td>07H020V20A-A</td>
<td>8,800/9,000</td>
<td>630/694</td>
<td>80/86</td>
</tr>
<tr>
<td>09H020V20A-A</td>
<td>11,800/12,000</td>
<td>930/93</td>
<td>80/86</td>
</tr>
<tr>
<td>12H020V20A-A</td>
<td>14,600/15,000</td>
<td>1,000/1,000</td>
<td>80/86</td>
</tr>
</tbody>
</table>

NOTE
- *Rated in accordance with ARI Standard 380-93.*
- †Coefficient of Performance (COP) at 47 F outdoor ambient temperature.
- **Electric resistance heater power and fan motor power.**
- COP — Coefficient of performance
- EER — Energy Efficiency Ratio
- R-410A — Refrigerant
- CFM — Cubic feet per minute
- **AMPS**
- **WATTS**

PERFORMANCE AND ELECTRICAL DATA

<table>
<thead>
<tr>
<th>MODEL NUMBER E-TAC</th>
<th>NEMA CONFIGURATION</th>
<th>AMPS</th>
<th>RATED VOLTS</th>
<th>TIME-DELAY TYPE FUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>NEMA CONFIGURATION</td>
<td>AMPS</td>
<td>RATED VOLTS</td>
<td>TIME-DELAY TYPE FUSE</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>6-15R</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>6-20R</td>
<td>20</td>
<td>30</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>6-30R</td>
<td>30</td>
<td>277</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>7-15R</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>7-20R</td>
<td>20</td>
<td>277</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>7-30R</td>
<td>30</td>
<td>277</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

LEGEND
- A — Long Pin
- B — Square Pin
- C — Round Pin
- D — Three Pin
- E — Two Pin
- F — One Pin
PERFORMANCE AND ELECTRICAL DATA (CONT.)

265 V HEAT/COOL MODELS

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>CAPACITY* (Btuh)</th>
<th>AMPS</th>
<th>WATTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heating** Heating</td>
<td>Cooling</td>
<td>Heating</td>
</tr>
<tr>
<td></td>
<td>Rev. Cyc.</td>
<td>Electric</td>
<td>KW</td>
</tr>
<tr>
<td>07HC265V20A-A</td>
<td>7,200</td>
<td>N/A</td>
<td>10,200</td>
</tr>
<tr>
<td>09HC265V20A-A</td>
<td>9,000</td>
<td>N/A</td>
<td>10,200</td>
</tr>
<tr>
<td>12HC265V20A-A</td>
<td>12,000</td>
<td>N/A</td>
<td>10,200</td>
</tr>
<tr>
<td>12HC265V30A-A</td>
<td>12,000</td>
<td>N/A</td>
<td>17,000</td>
</tr>
<tr>
<td>15HC265V20A-A</td>
<td>15,000</td>
<td>N/A</td>
<td>10,200</td>
</tr>
<tr>
<td>15HC265V30A-A</td>
<td>15,000</td>
<td>N/A</td>
<td>17,000</td>
</tr>
</tbody>
</table>

LEGEND

- **EER** = Energy Efficiency Ratio
- **COP** = Coefficient of performance
- **CFM** = Cubic feet per minute
- **KW** = Kilowatts
- **W** = Watts
- **R** = R-410A
- **DEHUMIDIFICATION** = Pints per hour
- **SENSIBLE FACTOR** = Degree of comfort and operating economy
- **APPROX. CHASSIS WEIGHT** = (lbs)

INDOOR FAN

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>POWER FACTOR (%)</th>
<th>Horsepower</th>
<th>Full Load Amps</th>
<th>CFM HI Speed</th>
<th>MAX FUSE SIZE (Amps)</th>
<th>MIN. CIRCUIT AMP</th>
<th>RECEPTACLE TYPE</th>
<th>R-410A CHARGE (oz)</th>
<th>DEHUMIDIFICATION (Pints/HR)</th>
<th>SENSIBLE FACTOR</th>
<th>APPROX. CHASSIS WT. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07HC265V20A-A</td>
<td>97%</td>
<td>0.028</td>
<td>0.1</td>
<td>300</td>
<td>20</td>
<td>18.5</td>
<td>E</td>
<td>19.40</td>
<td>2.1</td>
<td>81%</td>
<td>126</td>
</tr>
<tr>
<td>09HC265V20A-A</td>
<td>99%</td>
<td>0.028</td>
<td>0.2</td>
<td>300</td>
<td>20</td>
<td>16.5</td>
<td>E</td>
<td>19.40</td>
<td>2.1</td>
<td>81%</td>
<td>126</td>
</tr>
<tr>
<td>12HC265V20A-A</td>
<td>99%</td>
<td>0.031</td>
<td>0.2</td>
<td>310</td>
<td>30</td>
<td>27.2</td>
<td>F</td>
<td>25.04</td>
<td>2.7</td>
<td>67%</td>
<td>132</td>
</tr>
<tr>
<td>12HC265V30A-A</td>
<td>99%</td>
<td>0.031</td>
<td>0.2</td>
<td>310</td>
<td>30</td>
<td>27.2</td>
<td>F</td>
<td>25.04</td>
<td>2.7</td>
<td>67%</td>
<td>132</td>
</tr>
<tr>
<td>15HC265V20A-A</td>
<td>98%</td>
<td>0.031</td>
<td>0.2</td>
<td>320</td>
<td>20</td>
<td>16.5</td>
<td>E</td>
<td>40.21</td>
<td>3.5</td>
<td>65%</td>
<td>141</td>
</tr>
<tr>
<td>15HC265V30A-A</td>
<td>98%</td>
<td>0.031</td>
<td>0.2</td>
<td>320</td>
<td>30</td>
<td>27.2</td>
<td>F</td>
<td>40.21</td>
<td>3.5</td>
<td>65%</td>
<td>141</td>
</tr>
</tbody>
</table>

RECEP'TACLE

<table>
<thead>
<tr>
<th>RECEPTACLE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA CONFIGURATION</td>
<td>6-15R</td>
<td>6-20R</td>
<td>6-30R</td>
<td>7-15R</td>
<td>7-20R</td>
<td>7-30R</td>
</tr>
<tr>
<td>AMPS</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>15</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>RATED VOLTS</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>277</td>
<td>277</td>
<td>277</td>
</tr>
<tr>
<td>TIME-DELAY TYPE FUSE (or HACR Circuit Breaker)</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>15</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

*Rated in accordance with ARI Standard 390-93.
†Coefficient of Performance (COP) at 47 F outdoor ambient temperature.
**Electric resistance heater power and fan motor power.

Notes

- **CFM** — Cubic feet per minute
- **KW** — Kilowatts
- **W** — Watts
- **R** — R-410A
- **DEHUMIDIFICATION** — Pints per hour
- **SENSIBLE FACTOR** — Degree of comfort and operating economy
- **APPROX. CHASSIS WEIGHT** — (lbs)
PERFORMANCE AND ELECTRICAL DATA

208/230V HEAT PUMP MODELS

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Capacity</th>
<th>Volts</th>
<th>HP</th>
<th>R-410A Charge (oz)</th>
<th>Sensible Heat Factor</th>
<th>Chassis Size (Amps)</th>
<th>Approx. Chassis Ship Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBE123B-D</td>
<td>15,000</td>
<td>208/230</td>
<td>30</td>
<td>4118/5037</td>
<td>41.1/5.37</td>
<td>630/3/694,2</td>
<td>72/253</td>
</tr>
<tr>
<td>GBE125B-D</td>
<td>17,000</td>
<td>208/230</td>
<td>30</td>
<td>4118/5037</td>
<td>41.1/5.37</td>
<td>630/3/694,2</td>
<td>72/253</td>
</tr>
<tr>
<td>GBE127B-D</td>
<td>19,000</td>
<td>208/230</td>
<td>30</td>
<td>4118/5037</td>
<td>41.1/5.37</td>
<td>630/3/694,2</td>
<td>72/253</td>
</tr>
<tr>
<td>GBE155B-D</td>
<td>22,000</td>
<td>208/230</td>
<td>30</td>
<td>4118/5037</td>
<td>41.1/5.37</td>
<td>630/3/694,2</td>
<td>72/253</td>
</tr>
</tbody>
</table>

POWER FACTOR

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Power Factor (%)</th>
<th>Horsepower</th>
<th>Full Load Amps</th>
<th>CFM HI Speed</th>
<th>MAX Fuse Size (Amps)</th>
<th>MIN. Circuit AMP.</th>
<th>RECEPTACLE TYPE</th>
<th>R-410A Charge (oz)</th>
<th>DEHUMIDIFICATION (Pint/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBE123B-D</td>
<td>97%</td>
<td>0.028</td>
<td>0.1</td>
<td>280/300</td>
<td>20</td>
<td>16.5</td>
<td>B</td>
<td>21.5</td>
<td>7.5/6.7</td>
</tr>
<tr>
<td>GBE125B-D</td>
<td>99%</td>
<td>0.028</td>
<td>0.2</td>
<td>280/300</td>
<td>20</td>
<td>16.5</td>
<td>B</td>
<td>21.5</td>
<td>7.5/6.7</td>
</tr>
<tr>
<td>GBE127B-D</td>
<td>99%</td>
<td>0.031</td>
<td>0.2</td>
<td>280/300</td>
<td>20</td>
<td>16.5</td>
<td>B</td>
<td>21.5</td>
<td>7.5/6.7</td>
</tr>
<tr>
<td>GBE155B-D</td>
<td>98%</td>
<td>0.031</td>
<td>0.2</td>
<td>320/340</td>
<td>30</td>
<td>27.2</td>
<td>C</td>
<td>26.8</td>
<td>67/135</td>
</tr>
<tr>
<td>GBE175B-D</td>
<td>98%</td>
<td>0.031</td>
<td>0.2</td>
<td>320/340</td>
<td>30</td>
<td>27.2</td>
<td>C</td>
<td>26.8</td>
<td>67/135</td>
</tr>
</tbody>
</table>

Legend

- **EER** — Energy Efficiency Ratio
- **COP** — Coefficient of performance
- **CFM** — Cubic feet per minute

DESIGN FLEXIBILITY FOR THE ARCHITECT/ENGINEER

- **Initial Cost Savings for the Building Owner**
- **Lower Operating Costs and Reliable Comfort for The Occupant**
- **No complex match--up of different HVAC equipment**
- **No bulky duct system**
- **Less sensitivity to building orientation (sun, wind, shade)**
- **Optional architectural grille to permit custom exterior appearance**
- **Two--part delivery to minimize on--site engineering**
- **Weather--protected wall sleeve that goes in existing wall sleeve**
- **No expensive component HVAC system**

RETROFIT/REPLACEMENT

- **Replace the existing wall sleeve with the E-TAC Packaged Terminal Air Conditioning (E-TAC) unit is designed to meet the needs of the architect, engineer, and contractor. For unit installation, Gree's expert support network will assist in all applicable aspects of the construction project, from preparing a budget to start-up.**

NEMA CONFIGURATION

<table>
<thead>
<tr>
<th>AMPs</th>
<th>6-15R</th>
<th>6-20R</th>
<th>6-30R</th>
<th>7-15R</th>
<th>7-20R</th>
<th>7-30R</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>30</td>
<td>277</td>
<td>20</td>
<td>277</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>30</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

TIME-DELAY TYPE FUSE

<table>
<thead>
<tr>
<th>Amps</th>
<th>6-15R</th>
<th>6-20R</th>
<th>6-30R</th>
<th>7-15R</th>
<th>7-20R</th>
<th>7-30R</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>30</td>
<td>277</td>
<td>20</td>
<td>277</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>30</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

- The Gree E-TAC Packaged Terminal Air Conditioning unit is designed to meet the needs of the architect, engineer, and contractor. For unit installation, Gree's expert support network will assist in all applicable aspects of the construction project, from preparing a budget to start-up.

NOTES

- If you are replacing a unit in an existing wall sleeve, your options include:
 - Replace the existing wall sleeve with the E-TAC Packaged Terminal Air Conditioning (E-TAC) unit is designed to meet the needs of the architect, engineer, and contractor. For unit installation, Gree's expert support network will assist in all applicable aspects of the construction project, from preparing a budget to start-up.
 - Use an existing sleeve and exterior grille. The exterior grille must also be replaced in minutes without damaging the degree of comfort and operating economy. Fast servicing reduces downtime: complete new unit installation in minutes.

NOTES

- Each unit operates independently of other units. No bulky duct system is required. Each unit is self-contained, providing comfort in situations where no ductwork is available. Equipment can be replaced in minutes without damaging the exterior appearance of the building. The following major competitors' wall sleeves, with a required wall sleeve chassis can be replaced in minutes without damaging the exterior appearance of the building. The following major competitors' wall sleeves, with a required wall sleeve retrofit kit is required.

NOTES

- The following major competitors' wall sleeves, with a required wall sleeve retrofit kit is required.

NOTES

- The following major competitors' wall sleeves, with a required wall sleeve retrofit kit is required.
Whether you are designing a new structure or replacing a unit in an existing wall sleeve, Gree’s expert support network will assist you. The Gree E-TAC Packaged Terminal Air Conditioning System is designed to meet the needs of the architect/engineer and the owner.

Design Flexibility for the Architect/Engineer

NEW CONSTRUCTION

- **Initial Cost Savings for the Building Owner**: Depending on the circumstances, the initial savings can range from 10% to 30% when comparing the cost of an E-TAC system to that of a conventional HVAC system.
- **No Equipment Room or Maintenance**: Unlike traditional HVAC systems, the E-TAC requires no equipment room or maintenance, which can save significant space and maintenance costs.
- **No Expensive Component HVAC System**: The system is designed to be a compact, self-contained unit, eliminating the need for expensive component HVAC systems.
- **No Bulky Duct System**: The compact design of the E-TAC eliminates the need for a bulky duct system, which can be a significant advantage in new construction projects.

RETROFIT/REPLACEMENT

- **Lower Operating Costs and Reliable Comfort**: Each unit operates independently of other units in the building, allowing for lower operating costs and reliable comfort control.
- **No Complex Match-Up of Different HVAC Systems**: The E-TAC is designed to be a flexible solution that can be easily integrated with existing HVAC systems.
- **No Water Towers or Additional Cooling**: The E-TAC is a self-contained unit, eliminating the need for water towers or additional cooling systems.
- **Less Sensitivity to Building Orientation (Sun, Wind, Shade)**: The compact design of the E-TAC allows it to be less sensitive to building orientation, wind, and shade.
- **Better Performance in Extreme Conditions**: The E-TAC is designed to perform well in extreme conditions, making it a reliable choice for homes and assisted living care facilities.
- **Two-Part Delivery to Minimize On-Site Installation**: The E-TAC can be delivered in two parts, allowing for easier and more efficient on-site installation.
- **Weather-Protected Wall Sleeve that Goes In One Piece**: The weather-protected design of the E-TAC allows it to be installed in one piece, protecting it from the elements.
- **No Dependence by Building on Central HVAC System**: The E-TAC is a self-contained unit, eliminating the need for a central HVAC system.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model Number</th>
<th>E-TAC-</th>
<th>Power Factor (%)</th>
<th>Horsepower</th>
<th>Full Load Amps</th>
<th>CFM Hi Speed</th>
<th>Min. Circuit Amp</th>
<th>R-410A Charge (oz)</th>
<th>Dehumidification (Pints/Hr)</th>
<th>Sensible Heat Factor</th>
<th>Approx. Chassis Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07HP265V20A-A</td>
<td>97%</td>
<td>0.028</td>
<td>0.1</td>
<td>300</td>
<td>20</td>
<td>16.5</td>
<td>E</td>
<td>21.16</td>
<td>1.7</td>
<td>84%</td>
</tr>
<tr>
<td>09HP265V20A-A</td>
<td>99%</td>
<td>0.028</td>
<td>0.2</td>
<td>300</td>
<td>20</td>
<td>16.5</td>
<td>E</td>
<td>23.63</td>
<td>2.1</td>
<td>81%</td>
</tr>
<tr>
<td>12HP265V20A-A</td>
<td>99%</td>
<td>0.031</td>
<td>0.2</td>
<td>310</td>
<td>30</td>
<td>27.2</td>
<td>F</td>
<td>27.16</td>
<td>2.7</td>
<td>67%</td>
</tr>
<tr>
<td>15HP265V20A-A</td>
<td>98%</td>
<td>0.031</td>
<td>0.2</td>
<td>320</td>
<td>30</td>
<td>27.2</td>
<td>F</td>
<td>38.50</td>
<td>3.5</td>
<td>65%</td>
</tr>
<tr>
<td>15HP265V30A-A</td>
<td>98%</td>
<td>0.031</td>
<td>0.2</td>
<td>320</td>
<td>30</td>
<td>27.2</td>
<td>F</td>
<td>39.50</td>
<td>3.5</td>
<td>65%</td>
</tr>
</tbody>
</table>

PERFORMANCE AND ELECTRICAL DATA (CONT.)

265V HEAT PUMP MODELS

<table>
<thead>
<tr>
<th>Model Number</th>
<th>E-TAC-</th>
<th>Cooling Rev. Cycles</th>
<th>Electric Capacity (Btuh)</th>
<th>Heating Rev. Cycles</th>
<th>Electric Capacity (Btuh)</th>
<th>EER</th>
<th>COP†</th>
<th>Voltage Range</th>
<th>AMPS</th>
<th>WATTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>07HP265V20A-A</td>
<td>20</td>
<td>10,200</td>
<td>7,200</td>
<td>6,100</td>
<td>10,700</td>
<td>11.0</td>
<td>3.3</td>
<td>239-292</td>
<td>2.6</td>
<td>11.32</td>
</tr>
<tr>
<td>09HP265V20A-A</td>
<td>20</td>
<td>10,200</td>
<td>9,300</td>
<td>8,100</td>
<td>10,700</td>
<td>11.3</td>
<td>3.3</td>
<td>239-292</td>
<td>3.4</td>
<td>11.32</td>
</tr>
<tr>
<td>12HP265V20A-A</td>
<td>20</td>
<td>10,200</td>
<td>12,000</td>
<td>10,700</td>
<td>17,000</td>
<td>10.7</td>
<td>3.1</td>
<td>239-292</td>
<td>4.6</td>
<td>11.32</td>
</tr>
<tr>
<td>15HP265V20A-A</td>
<td>20</td>
<td>10,200</td>
<td>15,000</td>
<td>13,800</td>
<td>17,000</td>
<td>10.7</td>
<td>3.1</td>
<td>239-292</td>
<td>5.9</td>
<td>11.32</td>
</tr>
</tbody>
</table>

- **EER** — Energy Efficiency Ratio
- **COP†** — Coefficient of Performance
- **RATED VOLTS** — 250, 250, 250

NOTE

*Rated in accordance with ARI Standard 380-93.
†Coefficient of Performance (COP) at 47°F outdoor ambient temperature.
**Electric resistance heater power and fan motor power.

LEGEND

- EER — Energy Efficiency Ratio
- COP — Coefficient of performance
- CFM — Cubic feet per minute
- **Electric resistance heater power and fan motor power.

E-TAC

- **Receptacle**
 - **A**: NEMA 6-15R, 6-20R, 6-30R, 7-15R, 7-20R, 7-30R
 - **B**: 15, 20, 30, 15, 20, 30
 - **C**: 250, 250, 250, 277, 277, 277
 - **D**: 15, 20, 30, 15, 20, 30

ACCESSORY SLEEVE

- **Gree E-TAC** will fit into:
 - Single-family dwellings
 - Offices
 - Home conversions and residential add-ons
 - Nursing homes and assisted living care
 - Two-story buildings
 - Single-storied structures

FINISH MATERIALS

- **Wall Sleeve**
 - Aluminum
 - Stainless steel
 - Galvanized steel

BOILER

- **Gree E-TAC** can be used with a boiler to provide heating and cooling.

HEATER

- **Rev. Cyc. Electric**
 - Heating 2.6
 - Cooling 2.6

FAN MOTOR

- **Rev. Cyc. Electric**
 - Heating 11.32
 - Cooling 11.32

DEHUMIDIFICATION

- **Rev. Cyc. Electric**
 - Heating 655
 - Cooling 655

HEATING AND COOLING

- **Rev. Cyc. Electric**
 - Heating 3,036
 - Cooling 3,036

PERFORMANCE AND ELECTRICAL DATA (CONT.)

265V HEAT PUMP MODELS

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>E-TAC-</th>
<th>HEATING</th>
<th>AMPS</th>
<th>WATTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>07HP265V20A-A</td>
<td>20</td>
<td>10,700</td>
<td>2.6</td>
<td>655</td>
</tr>
<tr>
<td>09HP265V20A-A</td>
<td>20</td>
<td>10,700</td>
<td>3.4</td>
<td>825</td>
</tr>
<tr>
<td>12HP265V20A-A</td>
<td>20</td>
<td>17,000</td>
<td>4.6</td>
<td>1,120</td>
</tr>
<tr>
<td>15HP265V20A-A</td>
<td>20</td>
<td>17,000</td>
<td>5.9</td>
<td>1,530</td>
</tr>
<tr>
<td>15HP265V30A-A</td>
<td>20</td>
<td>17,000</td>
<td>5.9</td>
<td>1,530</td>
</tr>
</tbody>
</table>

NOTE

*Rated in accordance with ARI Standard 380-93.
†Coefficient of Performance (COP) at 47°F outdoor ambient temperature.
**Electric resistance heater power and fan motor power.
EXPANDED RATING DATA

COOLING PERFORMANCE - HEAT/COOL MODELS

ALL 7,000 NORMINAL BTUH MODELS
Evaporator entering air temp (D.B.) = 80 deg F

<table>
<thead>
<tr>
<th>TEMP (DEG F)</th>
<th>Temp EVAP AIR-EWB (DEG F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT COND (40%RH)</td>
<td>62</td>
</tr>
<tr>
<td>BtuH</td>
<td>8062</td>
</tr>
<tr>
<td>Kw</td>
<td>536</td>
</tr>
<tr>
<td>Shr</td>
<td>2.4</td>
</tr>
<tr>
<td>Shr</td>
<td>0.96</td>
</tr>
</tbody>
</table>

ALL 9,000 NORMINAL BTUH MODELS
Evaporator entering air temp (D.B.) = 80 deg F

<table>
<thead>
<tr>
<th>TEMP (DEG F)</th>
<th>Temp EVAP AIR-EWB (DEG F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT COND (40%RH)</td>
<td>62</td>
</tr>
<tr>
<td>BtuH</td>
<td>7500</td>
</tr>
<tr>
<td>Kw</td>
<td>582</td>
</tr>
<tr>
<td>Shr</td>
<td>2.5</td>
</tr>
<tr>
<td>Shr</td>
<td>0.98</td>
</tr>
</tbody>
</table>

ALL 12,000 NORMINAL BTUH MODELS
Evaporator entering air temp (D.B.) = 80 deg F

<table>
<thead>
<tr>
<th>TEMP (DEG F)</th>
<th>Temp EVAP AIR-EWB (DEG F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT COND (40%RH)</td>
<td>62</td>
</tr>
<tr>
<td>BtuH</td>
<td>6815</td>
</tr>
<tr>
<td>Kw</td>
<td>640</td>
</tr>
<tr>
<td>Shr</td>
<td>2.8</td>
</tr>
<tr>
<td>Shr</td>
<td>0.99</td>
</tr>
</tbody>
</table>

ALL 15,000 NORMINAL BTUH MODELS
Evaporator entering air temp (D.B.) = 80 deg F

<table>
<thead>
<tr>
<th>TEMP (DEG F)</th>
<th>Temp EVAP AIR-EWB (DEG F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT COND (40%RH)</td>
<td>62</td>
</tr>
<tr>
<td>BtuH</td>
<td>5251</td>
</tr>
<tr>
<td>Kw</td>
<td>758</td>
</tr>
<tr>
<td>Shr</td>
<td>3.3</td>
</tr>
<tr>
<td>Shr</td>
<td>0.99</td>
</tr>
</tbody>
</table>

LEGEND
- EWB - Entering Wet Bulb
- D.B. - Dry Bulb
- Amp - Total Current
- Kw - Total Power
- BtuH - Total Cooling Capacity
Whether you are designing a new structure or replacing packaged terminal air conditioning units in existing buildings, Gree’s E-TAC Packaged Terminal Air Conditioning units offer a wide range of advantages.

Design Flexibility for the Architect/Engineer

- **Construction Advantages for New Applications**
 - Whisper-quiet performance, indoors and out
 - Lower Operating Costs and Reliable Comfort
 - No equipment room or maintenance
 - No expensive component HVAC system
 - No separate equipment room
 - No bulky duct system
 - Less sensitivity to building orientation (sun, wind, shade)
 - Single-family dwellings
 - Nursing homes and assisted living care
 - Hotels and motels
 - Home conversions and residential add-ons
 - No water towers or additional cooling
 - Two-part delivery to minimize on-site purchase
 - Weather-protected wall sleeve that goes in place during construction; chassis that slides in place after construction
 - No seasonal changeover required for cooling

Gree E-TAC Packaged Terminal Air Conditioning

- **Evaporator entering air temp (D.B.) = 80 deg F**

EXPANDED RATING DATA

Cooling Performance - Heat Pump Models

<table>
<thead>
<tr>
<th>Temp (deg F) Air Ent Cond</th>
<th>Temp EVAP Air-EWB (deg F)</th>
<th>Temp EVAP Air-EWB (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlUh</td>
<td>12564</td>
<td>15182</td>
</tr>
<tr>
<td>Kw</td>
<td>939</td>
<td>1240</td>
</tr>
<tr>
<td>Amps</td>
<td>4.3</td>
<td>5.5</td>
</tr>
<tr>
<td>SHR</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>Shr</td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td>Shr</td>
<td>0.49</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Table for All 7,000 Nominal BTUH Models

<table>
<thead>
<tr>
<th>Temp (deg F) Air Ent Cond</th>
<th>Temp EVAP Air-EWB (deg F)</th>
<th>Temp EVAP Air-EWB (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlUh</td>
<td>12564</td>
<td>15182</td>
</tr>
<tr>
<td>Kw</td>
<td>939</td>
<td>1240</td>
</tr>
<tr>
<td>Amps</td>
<td>4.3</td>
<td>5.5</td>
</tr>
<tr>
<td>SHR</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>Shr</td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td>Shr</td>
<td>0.49</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Table for All 9,000 Nominal BTUH Models

<table>
<thead>
<tr>
<th>Temp (deg F) Air Ent Cond</th>
<th>Temp EVAP Air-EWB (deg F)</th>
<th>Temp EVAP Air-EWB (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlUh</td>
<td>12564</td>
<td>15182</td>
</tr>
<tr>
<td>Kw</td>
<td>939</td>
<td>1240</td>
</tr>
<tr>
<td>Amps</td>
<td>4.3</td>
<td>5.5</td>
</tr>
<tr>
<td>SHR</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>Shr</td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td>Shr</td>
<td>0.49</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Table for All 12,000 Nominal BTUH Models

<table>
<thead>
<tr>
<th>Temp (deg F) Air Ent Cond</th>
<th>Temp EVAP Air-EWB (deg F)</th>
<th>Temp EVAP Air-EWB (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlUh</td>
<td>12564</td>
<td>15182</td>
</tr>
<tr>
<td>Kw</td>
<td>939</td>
<td>1240</td>
</tr>
<tr>
<td>Amps</td>
<td>4.3</td>
<td>5.5</td>
</tr>
<tr>
<td>SHR</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>Shr</td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td>Shr</td>
<td>0.49</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Table for All 15,000 Nominal BTUH Models

<table>
<thead>
<tr>
<th>Temp (deg F) Air Ent Cond</th>
<th>Temp EVAP Air-EWB (deg F)</th>
<th>Temp EVAP Air-EWB (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlUh</td>
<td>12564</td>
<td>15182</td>
</tr>
<tr>
<td>Kw</td>
<td>939</td>
<td>1240</td>
</tr>
<tr>
<td>Amps</td>
<td>4.3</td>
<td>5.5</td>
</tr>
<tr>
<td>SHR</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>Shr</td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td>Shr</td>
<td>0.49</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Legend

- EWB: Entering Wet Bulb
- D.B.: Dry Bulb
- AMP: Total Current
- Kw: Total Power
- Btuh: Total Cooling Capacity
- RH: Relative Humidity

For more information on Gree E-TAC and its features, please refer to the official Gree documentation or contact your local Gree dealer for assistance.
EXPANDED RATING DATA

HEAT PUMP HEATING PERFORMANCE

<table>
<thead>
<tr>
<th>NORMINAL BtuH SIZE</th>
<th>OUTDOOR TEMP D.B (DEG F)</th>
<th>37</th>
<th>42</th>
<th>47</th>
<th>52</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,000</td>
<td>BtuH</td>
<td>5250</td>
<td>5540</td>
<td>6300</td>
<td>6900</td>
<td>7620</td>
</tr>
<tr>
<td></td>
<td>Kw</td>
<td>509</td>
<td>518</td>
<td>540</td>
<td>549</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>Amps</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>9,000</td>
<td>BtuH</td>
<td>6005</td>
<td>6399</td>
<td>8100</td>
<td>8647</td>
<td>9245</td>
</tr>
<tr>
<td></td>
<td>Kw</td>
<td>647</td>
<td>656</td>
<td>720</td>
<td>725</td>
<td>735</td>
</tr>
<tr>
<td></td>
<td>Amps</td>
<td>3.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>12,000</td>
<td>BtuH</td>
<td>7726</td>
<td>8531</td>
<td>10700</td>
<td>11278</td>
<td>12234</td>
</tr>
<tr>
<td></td>
<td>Kw</td>
<td>883</td>
<td>917</td>
<td>1010</td>
<td>1039</td>
<td>1073</td>
</tr>
<tr>
<td></td>
<td>Amps</td>
<td>4</td>
<td>4.1</td>
<td>4.5</td>
<td>4.7</td>
<td>4.9</td>
</tr>
<tr>
<td>15,000</td>
<td>BtuH</td>
<td>10530</td>
<td>10850</td>
<td>13300</td>
<td>14550</td>
<td>15940</td>
</tr>
<tr>
<td></td>
<td>Kw</td>
<td>1197</td>
<td>1212</td>
<td>1300</td>
<td>1377</td>
<td>1439</td>
</tr>
<tr>
<td></td>
<td>Amps</td>
<td>5.3</td>
<td>5.4</td>
<td>5.8</td>
<td>6.1</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Based on 70 Deg F Indoor Temperature

LEGEND

- **D.B.** - Dry Bulb
- **AMP** - Total current
- **Kw** - Total Power
- **BtuH** - Total Cooling Capacity
- **RH** - Relative Humidity

INDOOR FAN PERFORMANCE DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage</th>
<th>Dry CFM*</th>
<th>Wet CFM*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>7000 BTUH Heat / Cool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000 BTUH Heat Pump</td>
<td>208</td>
<td>235</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>260</td>
<td>280</td>
</tr>
<tr>
<td>7000 BTUH Heat / Cool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000 BTUH Heat Pump</td>
<td>265</td>
<td>260</td>
<td>280</td>
</tr>
<tr>
<td>9000 BTUH Heat / Cool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000 BTUH Heat Pump</td>
<td>208</td>
<td>235</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>260</td>
<td>280</td>
</tr>
<tr>
<td>9000 BTUH Heat / Cool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000 BTUH Heat Pump</td>
<td>265</td>
<td>260</td>
<td>280</td>
</tr>
<tr>
<td>12,000 BTUH Heat / Cool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,000 BTUH Heat Pump</td>
<td>208</td>
<td>245</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>270</td>
<td>290</td>
</tr>
<tr>
<td>12,000 BTUH Heat / Cool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,000 BTUH Heat Pump</td>
<td>265</td>
<td>270</td>
<td>290</td>
</tr>
<tr>
<td>15,000 BTUH Heat / Cool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,000 BTUH Heat Pump</td>
<td>208</td>
<td>270</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>300</td>
<td>320</td>
</tr>
<tr>
<td>15,000 BTUH Heat / Cool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,000 BTUH Heat Pump</td>
<td>265</td>
<td>300</td>
<td>320</td>
</tr>
</tbody>
</table>

* Dry = Heat Mode or Fan Only Mode — Indoor Standard CFM
* Wet = Cool Mode — Indoor Standard CFM
Indoor Sound Estimating Table (dBA and BELS)

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Volts</th>
<th>HEAT PUMP NOMINAL SIZES (dBA)</th>
<th>HEAT / COOL NOMINAL SIZES (BELS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Cool</td>
<td>208</td>
<td>55.2 9000 60.0 60.5</td>
<td>55.6 9000 61.0</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>56.5 60.0 60.7 60.5</td>
<td>57.1 60.9 61.8</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>60.7 57.9 59.9 60.0</td>
<td>57.6 61.6 61.7</td>
</tr>
<tr>
<td>Medium Cool</td>
<td>208</td>
<td>55.4 9000 60.8 60.8</td>
<td>55.9 9000 61.8</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>56.8 60.6 61.0 60.7</td>
<td>57.3 60.7 61.8</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>60.9 58.7 60.3 60.0</td>
<td>57.9 62.0 62.4</td>
</tr>
<tr>
<td>High Cool</td>
<td>208</td>
<td>55.9 9000 60.0 60.5</td>
<td>55.9 9000 61.2</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>57.6 61.1 61.4 61.2</td>
<td>57.8 61.2 61.9</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>61.1 59.5 61.2 62.0</td>
<td>58.3 62.3 62.9</td>
</tr>
<tr>
<td>Low Fan</td>
<td>208</td>
<td>46.9 9000 60.0 60.5</td>
<td>47.4 9000 61.0</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>49.9 53.3 55.4 57.1</td>
<td>49.0 53.4 54.5</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>51.1 51.4 53.6 56.0</td>
<td>51.9 51.9 53.5</td>
</tr>
<tr>
<td>Medium Fan</td>
<td>208</td>
<td>49.3 9000 60.0 60.5</td>
<td>50.2 9000 61.0</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>52.1 54.3 56.0 58.1</td>
<td>51.2 54.6 55.8</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>52.7 53.9 55.6 57.0</td>
<td>53.5 55.1 55.6</td>
</tr>
<tr>
<td>High Fan</td>
<td>208</td>
<td>51.3 9000 60.0 60.5</td>
<td>51.9 9000 61.0</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>53.6 55.7 57.3 59.2</td>
<td>53.2 55.9 56.7</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>54.1 55.6 57.1 59.0</td>
<td>54.4 56.3 57.4</td>
</tr>
<tr>
<td>Low Heat</td>
<td>208</td>
<td>55.3 9000 60.0 60.5</td>
<td>51.9 9000 61.0</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>56.6 61.4 61.1 62.1</td>
<td>55.5 54.6 56.0</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>59.0 62.2 60.7 61.0</td>
<td>52.6 53.2 53.5</td>
</tr>
<tr>
<td>Medium Heat</td>
<td>208</td>
<td>55.2 9000 60.0 60.5</td>
<td>54.2 9000 61.0</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>56.7 61.2 61.1 62.0</td>
<td>55.6 55.9 57.1</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>59.8 62.5 60.9 60.0</td>
<td>53.6 55.8 55.6</td>
</tr>
<tr>
<td>High Heat</td>
<td>208</td>
<td>55.8 9000 60.0 60.5</td>
<td>54.6 9000 61.0</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>57.5 61.8 61.5 62.3</td>
<td>55.8 56.6 57.4</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>60.2 62.7 61.5 62.0</td>
<td>55.0 57.2 57.9</td>
</tr>
</tbody>
</table>

See notes on page 38
OUTDOOR SOUND POWER DATA

Outdoor Sound Estimating Table (dBA and BELS)

Operating Mode	Voits	HEAT PUMP	HEAT / COOL		HEAT PUMP	HEAT / COOL												
----------------	-------	-----------	-------------		-----------	-------------												
		7000	9000	12000	15000	7000	9000	12000	15000	7000	9000	12000	15000					
Low Cool	208	67.4	NA	NA	NA	69.0	NA	NA	NA	72.0	6.7	NA	NA	NA	6.8	NA	NA	7.2
	230	69.3	71.3	72.0	73.0	69.6	71.3	72.4	73.1	6.9	7.1	7.2	7.3	7.0	7.1	7.2	7.3	
	265	69.9	70.7	72.9	73.0	69.4	72.2	72.5	73.3	7.0	7.1	7.3	7.3	6.9	7.2	7.3	7.3	
Medium Cool	208	67.4	NA	NA	NA	68.0	NA	NA	NA	72.0	6.7	NA	NA	NA	6.8	NA	NA	7.2
	230	69.3	71.3	72.0	73.0	69.6	71.3	72.4	73.1	6.9	7.1	7.2	7.3	7.0	7.1	7.2	7.3	
	265	69.9	70.7	72.9	73.0	69.4	72.2	72.5	73.3	7.0	7.1	7.3	7.3	6.9	7.2	7.3	7.3	
High Cool	208	67.4	NA	NA	NA	68.0	NA	NA	NA	72.0	6.7	NA	NA	NA	6.8	NA	NA	7.2
	230	69.3	71.3	72.0	73.0	69.6	71.3	72.4	73.1	6.9	7.1	7.2	7.3	7.0	7.1	7.2	7.3	
	265	69.9	70.7	72.9	73.0	69.4	72.2	72.5	73.3	7.0	7.1	7.3	7.3	6.9	7.2	7.3	7.3	
Low Heat	208	67.8	NA	NA	NA	-----	-----	-----	-----	6.8	NA	NA	NA	-----	-----	-----	-----	
	230	70.2	72.4	72.7	73.8	-----	-----	-----	-----	7.0	7.2	7.3	7.4	-----	-----	-----	-----	
	265	70.6	71.7	73.2	74.0	-----	-----	-----	-----	7.1	7.2	7.3	7.4	-----	-----	-----	-----	
Medium Heat	208	67.8	NA	NA	NA	-----	-----	-----	-----	6.8	NA	NA	NA	-----	-----	-----	-----	
	230	70.2	72.4	72.7	73.8	-----	-----	-----	-----	7.0	7.2	7.3	7.4	-----	-----	-----	-----	
	265	70.6	71.7	73.2	74.0	-----	-----	-----	-----	7.1	7.2	7.3	7.4	-----	-----	-----	-----	
High Heat	208	67.8	NA	NA	NA	-----	-----	-----	-----	6.8	NA	NA	NA	-----	-----	-----	-----	
	230	70.2	72.4	72.7	73.8	-----	-----	-----	-----	7.0	7.2	7.3	7.4	-----	-----	-----	-----	
	265	70.6	71.7	73.2	74.0	-----	-----	-----	-----	7.1	7.2	7.3	7.4	-----	-----	-----	-----	

Sound Transmission Coefficient (STC) = 23

NOTES:
1. The tables above indicate the approximate indoor and outdoor sound levels of a 52M unit.
2. Tests were conducted in the Carrier Sound Testing Laboratory according to AHRI (Air Conditioning, Heating and Refrigeration Institute) Noise Rating Standard 300 for non-ducted indoor air conditioning equipment.
3. NA = Not Available

E-TAC
FIELD-INSTALLED ACCESSORIES

OUTDOOR GRILLE SIZING

IMPORTANT: If you wish to use a grille not made for the Gree E-TAC contact Gree Application Engineering.

The following guidelines must be followed in the initial selection of any alternate exterior grille or louver:

1. The louver must have a minimum of 65% free area. Free area is the minimum area of the opening in an air inlet or outlet in which air can pass. Free Area (%) = X/Y.

2. The louver should be attached to the wall sleeve in a manner that will prevent recirculation of condenser discharge air into the inlet. In most applications, baffles, splitters, and/or gasket will be required between the chassis tube end sheets and the louver to prevent air recirculation.

The above criteria must be followed, since a louver that is restrictive or allows re-circulation will result in a reduction of the unit’s capacity and efficiency and will ultimately shorten the compressor life.

<table>
<thead>
<tr>
<th>Sample Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Area (%) = (\frac{x}{y}) x 100</td>
</tr>
<tr>
<td>(x = 1)</td>
</tr>
<tr>
<td>(y = 1.5)</td>
</tr>
<tr>
<td>F.A. (%) = (\frac{1}{1.5}) x 100 = 66.7%</td>
</tr>
</tbody>
</table>
Whether you are designing a new structure or an existing building, Gree E-TAC will meet your needs. The Gree E-TAC Packaged Terminal Air Conditioning (PTAC) unit is designed to meet the needs of the architect, engineer, and contractor. For unit installation, Gree's expert support network will assist in all applicable aspects of the construction project.

ADVANTAGES FOR NEW CONSTRUCTION APPLICATIONS

- Lower Operating Costs and Reliable Comfort
- Initial Cost Savings for the Building Owner
- Whisper-quiet performance, indoors and out
- No expensive component HVAC system
- No water towers or additional cooling systems
- Less sensitivity to building orientation (sun, wind, shade)
- No seasonal changeover required for cooling
- Single-family dwellings
- Offices
- Hotels and motels
- Nursing homes and assisted living care
- Home conversions and residential add-ons
- Individual units allow tenants to choose the degree of comfort and operating economy

RETROFIT/REPLACEMENT

If you are replacing a unit in an existing wall sleeve, your options include:

- Use an existing sleeve and exterior grille. The chassis can be replaced in minutes without disrupting other occupants.
- Replace the existing wall sleeve with the accessory retrofit kit. The polymer wall sleeve. See accessory sleeve section for selecting the correct sleeve for the application.
- Heat pump models offer substantial savings.
- Each unit operates independently of other units in the building. No dependency by engineering staff.
- Optional architectural grille to permit custom extension (see accessory Friedrich Retrofit Wall Sleeve Adapter).

Gree E-TAC will fit into:

- Trane, Friedrich and Bryant, and NO E-TAC

NOTE

In most cases, when replacing the wall sleeve, the exterior grille must also be replaced.

LEGEND

- AP1 Main Circuit Board
- AP2 Relay Circuit Board
- AP3 Display Circuit Board
- C1 Compressor Capacitor
- C2 Fan Motor Capacitor
- L1, L2 Electric Heater Relay
- L3 Compressor Relay
- M1 Compressor Motor
- M2 Outdoor Fan Motor
- M3 Indoor Fan Motor
- OUTTUBE Outdoor Coil Sensor
- ROOM Room Air Temp. Sensor
- SAT Compressor Overload
- TC Transformer
- TRIN-24V Transformer 24 Volt Connector
- TUBE Indoor Coil Sensor
- X1 Main Power Connector
- X2 Heater Connector
- X3 Heater Limit Connector
- X4 Indoor Fan Motor Connector
- X5, X6 Transformer Connector
- X7, X8 Board Jumper Connector
- XT1 Terminal Block (White)
- XT2 Terminal Block (Black)
- YV Reversing Valve (Heat Pump Units)

E-TAC – Typical Wiring Schematic for Standard Units

(Except Models with 5KW Elec. Heaters)
WIRING SCHEMATIC

Whether you are designing a new structure or needs. an existing building, Gree E-TAC will meet your in all applicable aspects of the construction project, installation, Gree's expert support network will assist architect, engineer, and contractor. For unit

Design Flexibility for the Architect/Engineer

CONSTRUCTION

NEW CONSTRUCTION

APPLICATIONS

Whisper--quiet performance, indoors and out

• Hotels and motels

• No equipment room or maintenance

• No expensive component HVAC system

• No separate equipment room

• No bulky duct system

• No water towers or additional cooling

• Less sensitivity to building orientation (sun, wind, shade)

• No complex match--up of different HVAC components

• No seasonal changeover required for cooling

• Single--family dwellings

• Apartments

• Optional architectural grille to permit custom extension (see accessory Friedrich Retrofit Wall Sleeve Adapter).

• Weather--protected wall sleeve that goes in place during construction; chassis that slides in place after construction

• No changeover required for cooling or heating -- units are self--contained comfort systems

• E-TAC – Typical Wiring Schematic for Models with 5KW Elec. Heaters

E-TAC – Typical Wiring Schematic for Models with 5KW Elec. Heaters

LEGEND

AP1 Main Circuit Board
AP2 Relay Circuit Board
AP3 Display Circuit Board
C1 Compressor Capacitor
C2 Fan Motor Capactor
L1, L2 Electric Heater Relay
L3 Compressor Relay
M1 Compressor Motor
M2 Outdoor Fan Motor
M3 Indoor Fan Motor
OUTTUBE Outdoor Coil Sensor
ROOM Room Air Temp. Sensor
SAT Compressor Overload
TC Transformer
TRIN-24V Transformer 24 Volt Connector
TUBE Indoor Coil Sensor
X1 Main Power Connector
X2 Heater Connector
X3 Heater Limit Connector
X4 Indoor Fan Motor Connector
X5,X6 Transformer Connector
X7,X8 Board Jumper Connector
XT1 Terminal Block (White)
XT2 Terminal Block (Black)
YV Reversing Valve (Heat Pump Units)
Excessive air infiltration can intensify problems greater than required load for the specific application, including vents, gaps around windows and dehumidification, or heating. Sources of air infiltration include doors, and improperly sealed floors, ceilings or wall units. This can cause the unit to cycle on and off, however, a hot and/or humid climate would be a cool, yet uncomfortable setting.

If a PTAC unit is undersized (cooling capacity is less than required load for an application), the unit will not be able to cool the space down to the desired degree of comfort and operating economy. It is important that air conditioning systems be properly sized and installed for each application in order to achieve the desired temperature and humidity match the PTAC units with the building structure and climate. Gree E-TAC will meet your needs for The Occupant, whether you are designing a new structure or replacing packaged terminal air conditioning units in an existing building.

Design Flexibility for the Architect/Engineer

- No equipment room or maintenance
- No expensive component HVAC system
- No separate equipment room
- No water towers or additional cooling
- No complex match-up of different HVAC systems
- Less sensitivity to building orientation (sun, wind, shade)
- No seasonal changeover required for cooling
- No water in the ebase pan to boost operating efficiency
- Single-family dwellings
- Offices
- Guest rooms
- Hotels and motels
- Home conversions and residential add-ons
- Condominiums
- Shopping centers
- Restaurants

Initial Cost Savings for the Building Owner

- Two-part delivery to minimize on-site damage
- No equipment room or maintenance
- No expensive component HVAC system
- No separate equipment room
- No water in the ebase pan to boost operating efficiency
- Less sensitivity to building orientation (sun, wind, shade)
- No seasonal changeover required for cooling
- No water in the ebase pan to boost operating efficiency
- Single-family dwellings
- Offices
- Guest rooms
- Hotels and motels
- Home conversions and residential add-ons
- Condominiums
- Shopping centers
- Restaurants

Lower Operating Costs and Reliable Comfort

- Each unit operates independently of other units in the building. No dependency by furnishing engineers.
- Whisper-quiet performance, indoors and out
- Optional architectural grille to permit custom exterior appearance
- Fast servicing reduces downtime: complete replacement in just a few minutes
- Weather-protected wall sleeve that goes in place during construction; chassis that slides in place after construction
- Damage to existing wall sleeves is minimized
- Damage to existing wall sleeves is minimized

TYPICAL WIRING SCHEMATIC FOR ENERGY MANAGEMENT INTERFACE

LEGEND

<table>
<thead>
<tr>
<th>AWG</th>
<th>American Wire Gage</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Black</td>
</tr>
<tr>
<td>PTAC</td>
<td>Packaged Terminal Air Conditioner</td>
</tr>
<tr>
<td>W</td>
<td>White</td>
</tr>
</tbody>
</table>

NOTES:

1. To size transformer, use the following equation:

 Quantity of PTAC units x 12 va = Transformer Size (va)
 Example: 110 PTAC Units x 12 va = 1320 va Transformer

2. Following are recommended wire sizes:

<table>
<thead>
<tr>
<th>AWG WIRE SIZE NO.</th>
<th>MAXIMUM LENGTH ft (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>400 (121.9)</td>
</tr>
<tr>
<td>22</td>
<td>600 (182.9)</td>
</tr>
<tr>
<td>20</td>
<td>900 (274.3)</td>
</tr>
<tr>
<td>18</td>
<td>1500 (457.2)</td>
</tr>
<tr>
<td>16</td>
<td>2000 (609.6)</td>
</tr>
</tbody>
</table>
TYPICAL WIRING SCHEMATIC FOR MULTIPLE E-TACS CONNECTED TO A SINGLE WALL THERMOSTAT

1. Do not daisy chain R (24 VAC).
2. Maximum of 4 E-TAC units can be connected to one single wall thermostat.
3. Wall thermostat wire is field-supplied and should be 18 to 20 gage solid thermostat wire.
PACKAGED TERMINAL COOLING UNIT
WITH HEAT PUMP OR ELECTRIC HEATING

HVAC Guide Specifications

Size Range:
- Cooling: 7,200 to 15,000 Btuh
- Electrical Heating: 5,600 to 17,100 Btuh
- Heat Pump: 6,100 to 13,800 Btuh

Model Numbers:
- Cooling with Electric Heat
- Heat Pump with Electric Heat

Part 1 — System Description

Packaged Terminal Air Conditioners shall be of the sizes and capacities as shown on the contract drawing schedule and in the specifications.

System shall be tested to insure no water infiltration into the room, when tested at eight inches of rain per hour with 40 mph (64.4 KPh) wind.

The complete system shall consist of the following:

A. Packaged Terminal Heat Pump or Heat/Cool Chassis: See section 2 - Chassis Description

B. Power Cord or Hardwire Kit shall provide the power connection to the unit.

C. Insulated Polymer Wall Sleeve shall provide excellent thermal insulation, be textured to hide scratches and prevent shine, will have superior outdoor noise absorption and shall be corrosion free for the life of the product. The Wall Sleeve must have dimensions of 42” (1067 mm) width x 16” (406 mm) height x 14-7/8” (377.8 mm) depth and be shipped with a rear weather barrier installed.

D. Wall Sleeve Molding shall trim the wall sleeve to the existing wall, to hide wall imperfections and irregularities due to the sleeve opening.

E. Outdoor Polymer Louvered Grille shall resist corrosion, breakage and match the color specified on drawing schedule and specifications.

F. Subbase will support the wall sleeve when it extends into the room more than 4” (101.6 mm). Subbase must come from the factory pre-assembled, with a receptacle (size as specified on drawing schedule and specifications).

Part 2 — Chassis Description

2.1 General:

The chassis shall be a factory-assembled, single-piece heating and/or cooling unit, that is simple to install and operate. Just slide the chassis into a wall sleeve, plug it into an outlet, and operate after installation. The chassis dimensions shall not exceed 42” (1067 mm) wide and 16” (406 mm) high with room cabinet in place. The chassis shall consist of the following functional sections and components:

A. Certifications:

System shall be approved and certified by UL & UL, Canada. Chassis shall meet ASHRAE Standard 90.1 for minimum energy efficiency.

B. Operating Characteristics:

Chassis shall be capable of starting and running at 115°F (46.1°C) ambient outdoor temperature per maximum load criteria of ARI Standard 310/380.

C. Electrical:

The power cord will be 58” (1473 mm) for 208/230v models or 15” (381 mm) for 265v models. The Hardwire kit accessory will provide 36” (914 mm) of flexible conduit. The chassis current draw shall be specified on the chassis nameplate and match electrical requirements specified on the Contract drawing schedule and specifications.

The power cord plug configuration shall conform to NEMA standards and the rating shall support the current draw of the electric resistance heater. For 265v installations, UL codes require the use of an electrical equipped subbase for power cord usage or hardwire conduit for non-corded installations.

D. Safeties:

Compressor shall have automatic reset, over temperature and over current protection. The fan motors shall have an inherent, automatic reset over temperature protection. The electric heater shall have two over temperature protectors.
E. Air Flow System:
For superior sound and comfort, the airflow system shall consist of two, direct-drive permanently lubricated fan motors. The outdoor fan motor will be single speed, with a dynamically balanced, corrosion resistant, multi-blade axial flow design, with integrated slinger ring. The indoor fan motor will three speeds, with a dynamically balanced, aluminum, tangential blower wheel, to assure uniform air distribution and optimal sound. Both fan motors shall be of an enclosed design to reduce the effects of moisture and corrosion.

F. Compressor & Refrigerant:
The rotary-type Compressor shall be fully hermetic with internal and external vibration isolation. The refrigeration system will be sealed and contain a full refrigerant charge (R410A).

G. Coils:
Condenser and evaporator coils to be constructed of high-efficiency copper and aluminum, necessary to achieve EER and COP rating, as specified on the chassis name plate.

H. Factory-Installed Electric Heater:
The factory-installed, open coil type, electric heater is standard in heat/cool and heat pump chassis. The electric heater shall contain both an automatic reset and a one-shot over temperature protection device. The heating capacity of the electric heater shall be as identified on the Contract drawing schedule and in the specifications.

I. Controls:
All standard models shall be equipped with electronics, for added features and improved reliability of the unit.

The chassis shall have an easy to operate, user friendly, electronic display with simple to push, large digital buttons. All will be easily accessible and covered by a hinged door.

The mode selection control shall consist of OFF, FAN ONLY, HEAT, COOL and DRY operations. There will be 3 optional Fan Speed Options, LOW, MED or HIGH. The temperature selection will be controlled by color coded, simple to operate warmer and cooler buttons. The upper and lower setpoint temperature limits, can be easily configured.

All models shall have a configuration dipswitch, easily accessible for optimal comfort settings, CONTINUOUS or CYCLE fan mode in HEATING, CONTINUOUS or CYCLE fan mode in COOLING, FREEZE GUARD enabled or disabled, WALL THERMOSTAT enabled or disabled, EMERGENCY HEAT (for heatpumps), and 4 optional SETPOINT LIMIT selections.

Fan cycle configuration switches, will allow continuous fan operation for maximum comfort or cycle operation for maximum energy savings. Settings can be different for both heating and cooling operations, for maximum comfort and efficiency.

All standard models shall have Temperature Limiting control, with four easy to configure settings. Temperature limiting allows a room temperature range to be set, to avoid extreme temperature settings, to maximize energy savings.

Emergency Heat Switch (Heat Pump Models Only) shall disable the compressor in heating mode and only allow the use of electric heat during heating cycles. The Emergency Heat switch is active at all outdoor ambient temperatures.

All units shall be capable of interfacing to a wall thermostat; have a blank out label to cover the control panel for wall thermostat applications; and have a removable wall thermostat terminal block, to simplify field wiring. No additional field-installed kits shall be required.

Wall thermostat interface shall provide two fan speed selections to maximize comfort.

Compatible with 2 wire central desk control systems.

Freeze Guard to automatically activate the electric heater and indoor fan to warm the room, to prevent damage from freezing temperatures. Freeze guard will be active as long as there is power supplied to the unit. Unit shall have the ability to disable Freeze guard, if needed.

Unit shall have the option to display temperature in °F or °C.

Unit will have memory; in case power is lost, unit will return to all previous settings.

Unit will have a random compressor restart after a power outage, to prevent power surges due to many units turning on at the same time.

Room temperature sensing shall use a Solid state thermostat control.
J. Front Panel (supplied with chassis): Front panel shall be constructed of a polymer material to resist breakage and corrosion. It shall have a front louvered surface with integrated control door and air filters. The air filters shall be easily accessible without removing the front panel from the chassis.

K. Air Filters: The chassis shall contain air filters, with a minimum of 40% arrestance per ASHRAE Standard 52.1. Two easily accessible front access supply air filters, shall be interchangeable, washable and permanent type. The vent filter shall be a one-piece, removable and washable type filter.

L. Bi-Directional Discharge Grille: Bi-directional polymer discharge grille shall resist corrosion and breakage. It shall be easily set to direct air at 40 degrees from horizontal or 80 degrees from horizontal. This non-metallic discharge grille shall be cool to the touch during the heating cycle.

M. Ventilation: The chassis shall have a manual adjustable fresh air vent with a concealed manual control. The vent control shall allow a maximum of up to 65 CFM of fresh air to be drawn into the room when the indoor fan is operating and the door is open.

N. High Efficiency Condensate Removal System: The chassis shall have a condensate removal system consisting of a slinger ring integrated in the outdoor fan, to disperse condensate onto the condenser coil to be evaporated.

O. Accessories:

1. Hardwire kit (PN: HARDWIRE-KIT-xxA) shall be required if an accessory power cord is not used. The hardwire kit provides a permanent connection to the unit and shall have 36” (914 mm) of flexible steel conduit and a plug-in connector for easy connect/disconnect.

2. Insulated Polymer Wall Sleeve (PN: SLEEVE-INSUL-1PK) shall be made from a molded polymer, with factory installed insulation and a minimum flammability rating of UL94-5V. The sleeve surface shall be textured to prevent shine and hide scratches.

3. Deep Wall Metal Wall Sleeve (up to 28” / 711.2 mm.) (PN: SLEEVE-EXTxx-1PK) shall be a one-piece, extended wall sleeve, with factory installed insulation and deep wall baffles integrated.

4. Sleeve Molding (PN: SLEEVE-MOLDING) shall trim the wall sleeve to the existing wall to hide wall joints and irregularities due to the sleeve opening.

5. Architectural Grille (PN:GRILLE-PLA-xxxxx or GRILLE-ALU-xxxxx) shall be polymeric for long durable life or painted aluminum for a superior color match to the building.

6. Subbase (PN: PTAC-SUBBASE-A) shall be pre-assembled from the factory and UL listed. Subbase options include:
 — Non-electrical subbase: The non-electrical subbase shall be pre-assembled and provides mechanical support and requires no wiring.
 — Electrical subbase: The electrical subbase shall have electrical junction box containing a receptacle for corded units.

7. Drain kit (PN: DRAIN-KIT-1PK): This universal drain kit shall be used internally or externally to route excess condensate to a drainage system. It can be field-installed on any wall sleeve. The drain kit shall be attached to the exterior right or left side of the wall sleeve for external draining or may be mounted to the bottom of the wall sleeve for internal draining. The drain kit shall include both a straight tube and a 90° bend tube.

8. Wall Thermostats
 A. Wireless Wall Thermostat (PN: TT-N-631W) The wireless digital wall thermostat and receiver module provide maximum temperature control without pulling wires. The non-programmable wall thermostat comes complete with LCD display, backlighting and two speed fan control.
 B. Wired Wall Thermostats (PN: TT-N-411 & PN: TT-N-421) The digital wall thermostat shall have a large LCD display with backlighting, operate with 24VAC, be non-programmable, easy to use and provide maximum guest comfort.
3.0 DELIVERY, STORAGE, AND HANDLING

The packaging of the chassis shall be sufficient to protect the chassis from damage during shipment via an enclosed truck. Chassis must also be able to withstand an impact force of 8 g’s and a random continuous force of 1g, during shipping.

Chassis, wall sleeves, and grilles shall be shipped in separate cartons. Universal handling instructions shall be defined and visible on the carton, from front, back and sides.

Chassis shall be capable of withstanding temperatures from -40°F to 155°F (-40°C to 68.3°C), at 5 to 95 percent RH, non-condensing, during shipment and storage, without component failure.
The packaging of the chassis shall be sufficient to protect the chassis from damage during shipment via an enclosed truck. Chassis must also be able to withstand an impact force of 8 g's and a random continuous force of 1g, during shipping. Chassis, wall sleeves, and grilles shall be shipped in separate cartons. Universal handling instructions shall be defined and visible on the carton, from front, back and sides. Chassis shall be capable of withstanding temperatures from $-40 \degree F$ to $155 \degree F$ ($-40 \degree C$ to $68.3 \degree C$), at 5 to 95 percent RH, non-condensing, during shipment and storage, without component failure.